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Introduction

In this module, we discuss a pair of extremely important
statistical concepts — covariance and correlation.
We begin by defining covariance, and then extend the
concept to a special kind of covariance known as
correlation.
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Bivariate Distributions and Scatterplots

Through most of the course, we have dealt with data sets in
which each person (or, more generally, unit of observation)
was represented by a score on just one variable.
In the module on the correlated sample t test, we extended
our work to cover two repeated measures on the same
individuals.
When we have two measures on the same individuals, it is
common to plot each individual’s data in a two dimensional
plot called a scatterplot.
The scatterplot often allows us to see a functional
relationship between the two variables.
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Bivariate Distributions and Covariance

Here’s a question that you’ve thought of informally, but
probably have never been tempted to assess quantitatively:
“What is the relationship between shoe size and height?”
We’ll examine the question with a data set from an article
by Constance McLaren in the 2012 Journal of Statistics
Education.
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Bivariate Distributions and Covariance

The data file is available in several places on the course
website. You may download the file by right-clicking on it
(it is next to the lecture slides).
These data were gathered from a group of volunteer
students in a business statistics course.
If you place it in your working directory, you can then load
it with the command

> all.heights <- read.csv("shoesize.csv")

Alternatively, you can download directly from a web
repository with the command

> all.heights <- read.csv(

+ "http://www.statpower.net/R2101/shoesize.csv")
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Bivariate Distributions and Scatterplots

Here is the scatterplot for the male data.

> male.data <- all.heights[all.heights$Gender=="M",] #Select males

> attach(male.data)#Make Variables Available

> # Draw scatterplot

> plot(Size,Height,xlab="Shoe Size",ylab="Height in Inches")
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Bivariate Distributions and Scatterplots

This scatterplot shows a clear connection between shoe size
and height.
Traditionally, the variable to be predicted (the dependent
variable) is plotted on the vertical axis, while the variable
to be predicted from (the independednt variable) is plotted
on the horizontal axis.
Note that, because height is measured only to the nearest
inch, and shoe size to the nearest half-size, a number of
points overlap. The scaterplot indicates this by making
some points darker than others.
But how can we characterize this relationship accurately?
We notice that shoe size and height vary together.
A statistician might say they “covary.”
This notion is operationalized in a statistic called
covariance.
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Bivariate Distributions and Scatterplots

Let’s compute the average height and shoe size, and then
draw lines of demarcation on the scatterplot.

> mean(Height)

[1] 71.10552

> mean(Size)

[1] 11.28054
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Bivariate Distributions and Scatterplots

> plot(Size,Height,xlab="Shoe Size",ylab="Height in Inches")

> abline(v=mean(Size),col="red")

> abline(h=mean(Height),col="blue")

> text(13,80,"High-High")

> text(8,70,"Low-Low")
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Bivariate Distributions and Scatterplots

The upper right (“High-High”) quadrant of the plot
represents men whose heights and shoe sizes were both
above average.
The lower left (”Low-Low”) quadrant of the plot represents
men whose heights and shoe sizes were both below average.
Notice that there are far more data points in these two
quadrants than in the other two: This is because, when
there is a direct (positive) relationship between two
variables, the scores tend to be on the same sides of their
respective means.
On the other hand, when there is an inverse (negative)
relationship between two variables, the scores tend to be on
the opposite sides of their respective means.
This fact is behind the statistic we call covariance.
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Covariance
The Concept

What is covariance?
We convert each variable into deviation score form by
subtracting the respective means.
If scores tend to be on the same sides of their respective
means, then

1 Positive deviations will tend to be matched with positive
deviations, and

2 Negative deviations will tend to be matched with negative
deviations

To capture this trend, we sum the cross-product of the
deviation scores, then divide by n− 1.
So, essentially, the sample covariance between X and Y is
an estimate of the average cross-product of deviation scores
in the population.
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Covariance
Computations

The sample covariance of X and Y is defined as

sx,y =
1

n− 1

n∑
i=1

(Xi −Mx)(Yi −My) (1)

An alternate, more computationally convenient formula, is

sx,y =
1

n− 1

(
n∑

i=1

XiYi −
∑n

i=1Xi
∑n

i=1 Yi
n

)
(2)

An important fact is that the variance of a variable is its
covariance with itself, that is, if we substitute x for y in
Equation 1, we obtain

s2x = sx,x =
1

n− 1

n∑
i=1

(Xi −Mx)(Xi −Mx) (3)
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Covariance
Computations

Computing the covariance between two variables “by hand”
is tedious though straightforward and, not surprisingly
(because the variance of a variable is a covariance), follows
much the same path as computation of a variance:

1 If the data are very simple, and especially if n is small and
the sample mean a simple number, one can convert X and
Y scores to deviation score form and use Equation 1.

2 More generally, one can compute
∑
X,
∑
Y ,
∑
XY , and n

and use Equation 2.
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Example (Computing Covariance)

Suppose you were interested in examining the relationship
between cigarette smoking and lung capacity. You asked 5
people how many cigarettes they smoke in an average day, and
you then measure their lung capacities, which are corrected for
age, height, weight, and gender. Here are the data:

Cigarettes Lung.Capacity

1 0 45

2 5 42

3 10 33

4 15 31

5 20 29

(. . . Continued on the next slide)
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Example (Computing Covariance)

In this case, it is easy to compute the mean for both Cigarettes
(X) and Lung Capacity (Y), i.e., Mcigarettes = Mx = 10,
Mlung.capacity = My = 36, then convert to deviation scores and
use Equation 1 as shown below:

X dX dXdY dY Y XY

1 0 -10 -90 9 45 0

2 5 -5 -30 6 42 210

3 10 0 0 -3 33 330

4 15 5 -25 -5 31 465

5 20 10 -70 -7 29 580

The sum of the dXdY column is −225, and then compute the
covariance as

sx,y =
1

n− 1

n∑
i=1

dXidYi =
−215

4
= −53.75

(. . . Continued on the next slide)

James H. Steiger Covariance and Correlation



Bivariate Distributions and Scatterplots
Covariance

The (Pearson) Correlation Coefficient
Some Other Correlation Coefficients

Significance Test for the Correlation Coefficient

The Concept of Covariance
Computing Covariance
Limitations of Covariance

Covariance
Computations

Example (Computing Covariance)

Alternatively, one might compute
∑
X = 50,

∑
Y = 180,∑

XY = 1585, and n, and use Equation 2.

sx,y =
1

n− 1

(∑
XY −

∑
X
∑
Y

n

)
=

1

5− 1

(∑
1585− 50× 180

5

)
=

1

4

(∑
1585− 9000

5

)
=

1

4

(∑
1585− 1800

)
=

1

4
(−215)

= −53.75

Of course, there is a much easier way, using R. (. . . Continued
on the next slide)
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Example (Computing Covariance)

Here is how to compute covariance using R’s cov command. In
the case of really simple textbook examples, you can copy the
numbers right off the screen and enter them into R, using the
following approach.

> Cigarettes <- c(0,5,10,15,20)

> Lung.Capacity <- c(45,42,33,31,29)

> cov(Cigarettes,Lung.Capacity)

[1] -53.75
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Covariance
Limitations

Covariance is an extremely important concept in advanced
statistics.
Indeed, there is a statistical method called Analysis of
Covariance Structures that is one of the most widely used
methodologies in Psychology and Education.
However, in its ability to convey information about the
nature of a relationship between two variables, covariance
is not particularly useful as a single descriptive statistic,
and is not discussed much in elementary textbooks.
What is the problem with covariance?
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Covariance
Limitations

We saw that the covariance between smoking and lung
capacity in our tiny sample is −53.75.
The problem is, this statistic is not invariant under a
change of scale.
As a measure on deviation scores, we know that adding or
subtracting a constant from every X or every Y will not
change the covariance between X and Y .
However, multiplying every X or Y by a constant will
multiply the covariance by that constant.
It is easy to see that from the covariance formula, because
if you multiply every raw score by a constant, you multiply
the corresponding deviation score by that same constant.
We can also verify that in R. Suppose we change the
smoking measure to packs per day instead of cigarettes per
day by dividing X by 20. This will divide the covariance by
20.
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Covariance
Limitations

Here is the R calculation:

> cov(Cigarettes, Lung.Capacity)

[1] -53.75

> cov(Cigarettes, Lung.Capacity) / 20

[1] -2.6875

> cov(Cigarettes/20,Lung.Capacity)

[1] -2.6875

The problem, in a nutshell, is that the sign of a covariance
tells you whether the relationship is positive or negative,
but the absolute value is, in a sense, “polluted by the
metric of the numbers.”
Depending on the scale of the data, the absolute value of
the covariance can be very large or very small.
So how can we fix this?
Easy — we take the metric out of the numbers.
How do we do that?
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The (Pearson) Correlation Coefficient
Definition

To take the metric out of covariance, we compute it on the
Z-scores instead of the deviation scores. (Remember that
Z-scores are also deviation scores, but they have the
standard deviation divided out.)
The sample correlation coefficient rx,y, sometimes called
the Pearson correlation, but generally referred to as “the
correlation” is simply the sum of cross-products of Z-scores
divided by n− 1:

rx,y =
1

n− 1

n∑
i=1

ZxiZyi (4)

The population correlation ρx,y is the average
cross-product of Z-scores for the two variables.
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The (Pearson) Correlation Coefficient
Definition

One may also define the correlation in terms of the
covariance, i.e.,

rx,y =
sx,y
sxsy

(5)

Equation 5 shows us that we may think of a correlation
coefficient as a covariance with the standard deviations
factored out.
Alternatively, since we may turn the equation around and
write

sx,y = rx,ysxsy (6)

we may think of a covariance as a correlation with the
standard deviations put back in.
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The (Pearson) Correlation Coefficient
Computing the Correlation

Most textbooks give computational formulas for the
correlation coefficient. This is probably the most common
version.

rx,y =
n
∑
XY −

∑
X
∑
Y√[

n
∑
X2 − (

∑
X)2

] [
n
∑
Y 2 − (

∑
Y )2

] (7)

If we compute the quantities n,
∑
X,
∑
Y ,
∑
X2,

∑
Y 2,∑

XY , and substitute them into Equation 7, we can
calculate the correlation as shown on the next slide.
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The (Pearson) Correlation Coefficient
Computing the Correlation

Example (Computing a Correlation)

rxy =
(5)(1585)− (50)(180)√[

(5)(750)− 502
] [

(5)(6680)− 1802
]

=
7925− 9000√

(3750− 2500)(33400− 32400)

=
−1075√

(1250) (1000)

= −.9615

(Continued on the next slide . . . )
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Computing the Correlation

Example (Computing a Correlation)

In general, you should never compute a correlation by hand if
you can possibly avoid it. If n is more than a very small
number, your chances of successfully computing the correlation
would not be that high. Better to use R.Computing a
correlation with R is very simple. If the data are in two
variables, you just type

> cor(Cigarettes,Lung.Capacity)

[1] -0.9615092

By the way, the correlation between height and shoe size in our
example data set is

> cor(Size,Height)

[1] 0.7677094

James H. Steiger Covariance and Correlation



Bivariate Distributions and Scatterplots
Covariance

The (Pearson) Correlation Coefficient
Some Other Correlation Coefficients

Significance Test for the Correlation Coefficient

Definition
Computing
Interpretation

The (Pearson) Correlation Coefficient
Interpreting a Correlation

What does a correlation coefficient mean? How do we
interpret it?
There are many answers to this. There are more than a
dozen different ways of viewing a correlation. Professor Joe
Rodgers in our department co-authored an article on the
subject titled Thirteen Ways to Look at the Correlation
Coefficient.
We’ll stick with the basics here.
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The (Pearson) Correlation Coefficient
Interpreting a Correlation

There are three fundamental aspects of a correlation:
1 The sign. A positive sign indicates a direct (positive)

relationship, a negative sign indicates an inverse (negative)
relationship.

2 The absolute value. As the absolute value approaches 1, the
data points in the scatterplot get closer and closer to falling
in a straight line, indicating a strong linear relationship. So
the absolute value is an indicator of the strength of the
linear relationship between the variables.

3 The square of the correlation. r2x,y can be interpreted as the
“proportion of the variance of Y accounted for by X.”
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Example (Interpreting a Correlation)

Suppose rx,y = 0.50 in one study, and ra,b = −.55 in another.
What do these statistics tell us?

Answer. They tell us that the relationship between X and Y in
the first study is positive, while that between A and B in the
second study is negative. However, the linear relationship is
actually slightly stronger between A and B than it is between
X and Y .
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Interpreting a Correlation

Example (Some Typical Scatterplots)

Let’s examine some bivariate normal scatterplots in which the
data come from populations with means of 0 and variances of 1.
These will give you a feel for how correlations are reflected in a
scatterplot.
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Example (Some Typical Scatterplots)
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Example (Some Typical Scatterplots)
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Example (Some Typical Scatterplots)
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Example (Some Typical Scatterplots)
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Example (Some Typical Scatterplots)
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Example (Some Typical Scatterplots)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

rho = 0.95, n = 500

X

Y

James H. Steiger Covariance and Correlation



Bivariate Distributions and Scatterplots
Covariance

The (Pearson) Correlation Coefficient
Some Other Correlation Coefficients

Significance Test for the Correlation Coefficient

Introduction
The Spearman Rank-Order Correlation
The Phi Coefficient
The Point-Biserial Correlation

Some Other Correlation Coefficients
Introduction

The Pearson correlation coefficient is by far the most
commonly computed measure of relationship between two
variables.
If someone refers to “the correlation between X and Y ,”
they are almost certainly referring to the Pearson
correlation unless some other coefficient has been specified.
In this section, we review the other commonly employed
correlation coefficients that are discussed in your text.
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The Spearman Rank-Order Correlation

In a situation in which the data are only ordinal, or in
which there are severe outliers that strongly affect a
correlation, the Spearman rank-order correlation can be
very useful.
Recall that, when data are merely ordinal, any monotonic
increasing function can be applied to the data without
destroying the ordinal information.
When the data are ordinal, converting to ranks reduces the
extraneous (and meaningless) information in the data, and
reduces the data to its essentials.
In general, computers are extremely fast at sorting data
and converting them to ranks. The only complication
occurs if two scores are tied. What do you do then?
The common solution is this: If two or more scores are
tied, you assign to each of the tied scores the arithmetic
average of the ranks that the scores would have received
had they not been tied.
For example, if a set of scores is 3, 3, 4, 7, 7, 7, 9, the
corresponding ranks would be 1.5, 1.5, 3, 5, 5, 5, 7.
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The Spearman Rank-Order Correlation

Example (The Spearman Rank-Order Correlation)

x y rank.x rank.y

1 0 31 1 1.0

2 5 40 2 4.0

3 10 33 3 2.5

4 15 33 4 2.5

5 20 50 5 5.0

Given the above data, compute the Pearson correlation and the
Spearman correlation.
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The Spearman Rank-Order Correlation

Example (The Spearman Rank-Order Correlation)

Answer.

> # The Pearson Correlation is

> cor(x,y)

[1] 0.6260391

> # The Spearman correlation is

> cor(rank.x,rank.y)

[1] 0.6668859

> # However, R will do all the work for you!!

> cor(rank.x,rank.y,method="spearman")

[1] 0.6668859
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The Phi Coefficient
The Point-Biserial Correlation
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The Phi Coefficient

In some situations, the data can be reduced to a binary
variable.
Examples are True-False, Pass-Fail, Alive-Dead,
Male-Female, Experimental-Control.
If both variables are reduced to 0− 1 binary variables, then
the Pearson correlation between the resulting variables is
called a Phi Coefficient.
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The Phi Coefficient

Example (The Phi Coefficient)

In this example, a random sample of participants is obtained,
and each individual is classified in terms of birth-order position
as first-born versus later-born. Then, each individual’s
personality is classified as either introvert or extrovert. Here are
the resulting data from Gravetter and Walnau. Notice how the
original data on birth order are dichotomized into a 0− 1
variable:
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The Phi Coefficient

Example (The Phi Coefficient)
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Example (The Phi Coefficient)

To process the problem in R, we simply enter the 0− 1 data for
each variable and compute the Pearson correlation with the cor

function.

> x <- c(0,1,0,1,1,1,0,1)

> y <- c(0,1,1,1,1,0,0,1)

> cor(x,y)

[1] 0.4666667
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If only one of the two variables is a binary 0− 1 variable,
and the other is a variable measured on an interval scale of
measurement, then the Pearson correlation coefficient
calculated on the two variables is known as a point-biserial
correlation.
We already encountered this correlation when discussing
measures of effect size in connection with the two-sample,
independent sample t-test.
Recall that the relationship between the coefficient of
determination r2 and the two-sample t statistic is

r2 =
t2

t2 + df
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Example (The Point-Biserial Correlation)

Consider the following data:

Group Score

1 1 5

2 1 7

3 1 3

4 1 11

5 1 7

6 0 14

7 0 14

8 0 20

9 0 15

10 0 16
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Example (The Point-Biserial Correlation)

In this case, the Experimental Group (Group = 1) has a mean
Score of 6.6 and a standard deviation of 2.9665.

The Control Group (Group = 0) has a mean Score of 15.8 and a
standard deviation of 2.49.

Given that both sample sizes are n = 5, we can use the
simplified formula for the 2-sample t, or load the R routine from
the course website. I’ll take the easy way out and use the
routine from the website.

James H. Steiger Covariance and Correlation



Bivariate Distributions and Scatterplots
Covariance

The (Pearson) Correlation Coefficient
Some Other Correlation Coefficients

Significance Test for the Correlation Coefficient

Introduction
The Spearman Rank-Order Correlation
The Phi Coefficient
The Point-Biserial Correlation

Some Other Correlation Coefficients
The Point-Biserial Correlation

Example (The Point-Biserial Correlation)

> results <- t.2.sample(6.6,15.8,2.9665,2.49,5,

+ 5,alpha=0.05,tails=2)

> results

$t.statistic

[1] -5.311583

$df

[1] 8

$alpha

[1] 0.05

$critical.t.values

[1] -2.306004 2.306004
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Example (The Point-Biserial Correlation)

The t statistic is way beyond the rejection point. But what is
the effect size. We can compute it directly in R as

> ## Grab t-statistic from results

> ## of previous calculation

> t <- results$t.statistic

> df <- results$df

> ## Compute the r.squared

> t^2/(t^2 + df)

[1] 0.7790843

Of course, we can get the same result by computing the
point-biserial correlation as the ordinary Pearson correlation
between Group and Score and then squaring it. The slight
difference in results is due to my rounding off some of the
statistics input to the t routine.

> r <- cor(Group,Score)

> r^2

[1] 0.7790869
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Significance Test for r

To test whether Pearson correlation r is significantly
different from zero, use the following t statistic, which has
n− 2 degrees of freedom. Of course, the statistical null
hypothesis is that the population correlation ρ = 0.

tn−2 =
√
n− 2

r√
1− r2

(8)
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Significance Test for r

Example

Suppose you observe a correlation coefficient of 0.2371 with a
sample of n = 93. Can you reject the null hypothesis that
ρ = 0? Use α = 0.05.
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Significance Test for r

Example

Answer. We compute the t statistic with R.

> df <- 93 - 2

> t <- sqrt(df)*0.2371 / sqrt(1-0.2371^2)

> t

[1] 2.328177

> df

[1] 91

> t.crit <- qt(0.975,df)

> t.crit

[1] 1.986377

Since the observed t exceeds the critical value, we can reject the
null hypothesis and declare the correlation statistically
significant at the 0.05 level, two-tailed.
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